Next

UPSC IAS Mains 2020: Mechanical Engineering Optional Syllabus

UPSC:  The UPSC offers 48 optional subjects including three branches of Engineering for the Mains optional paper. Mechanical Engineering is one of the three engineering verticals included in the UPSC Mains optional list. The Mechanical Engineering optional syllabus tests the candidates’ understanding of the elements of mechanical engineering and their applications. The topics included in this subject are related to mechanics, manufacturing, thermodynamics, refrigeration and air conditioning along with their applications. Candidates with Mechanical Engineering academic background can choose this as an optional subject for UPSC IAS Mains 2020. 

Also Check: UPSC Mains - Detailed Syllabus for all Optional Papers

UPSC Optional Syllabus for Mechanical Engineering- Paper I

  1. Mechanics:

1.1 Mechanics of rigid bodies:

Equations of equilibrium in space and its application; first and second moments of area; simple problems on friction; kinematics of particles for plane motion; elementary particle dynamics.

1.2 Mechanics of deformable bodies:

Generalized Hooke's law and its application; design problems on axial stress, shear stress and bearing stress; material properties for dynamic loading; bending shear and stresses in beams;. determination of principle stresses and strains - analytical and graphical; compound and combined stresses; bi-axial stresses - thin walled pressure vessel; material behaviour and design factors for dynamic load; design of circular shafts for bending and torsional load only; deflection of beam for statically determinate problems; theories of failure.

Trending Now

  1. Engineering Materials:

Basic concepts on structure of solids; common ferrous and non-ferrous materials and their applications; heat-treatment of steels; non-metals- plastics, ceramics, composite materials and nano-materials.

  1. Theory of Machines:

Kinematic and dynamic analysis of plane mechanisms. Cams, Gears and epicyclic gear trains, flywheels, governors, balancing of rigid rotors, balancing of single and multicylinder engines, linear vibration analysis of mechanical systems (single degree of freedom), Critical speeds and whirling of shafts.

  1. Manufacturing Science:

4.1 Manufacturing Process:

4.2. Manufacturing Management:

UPSC Optional Syllabus for Mechanical Engineering- Paper II

  1. Thermodynamics, Gas Dynamics and Turbine:

1.1 Basic concept of First –law and second law of Thermodynamics; concept of entropy and reversibility; availability and unavailability and irreversibility.

1.2 Classification and properties of fluids; incompressible and compressible fluids flows; effect of Mach number and compressibility; continuity momentum and energy equations; normal and oblique shocks; one dimensional isentropic flow; flow or fluids in duct with frictions that transfer.

1.3 Flow through fans, blowers and compressors; axial and centrifugal flow configuration; design of fans and compressors; single problems compresses and turbine cascade; open and closed cycle gas turbines; work done in the gas turbine; reheat and regenerators.

  1. Heat Transfer:

2.1 Conduction heat transfer- general conduction equation - Laplace, Poisson and Fourier equations; Fourier law of conduction; one dimensional steady state heat conduction applied to simple wall, solid and hollow cylinder & spheres.

2.2 Convection heat transfer- Newton's law of convection; free and forces convection; heat transfer during laminar and turbulent flow of an incompressible fluid over a flat plate; concepts of Nusselt number, hydrodynamic and thermal boundary layer their thickness; Prandtl number; analogy between heat and momentum transfer- Reynolds, Colbum, Prandtl analogies; heat transfer during laminar and turbulent flow through horizontal tubes; free convection from horizontal and vertical plates.

 

2.3 Black body radiation - basic radiation laws such as Stefan-Boltzman, Planck distribution, Wein's displacement etc.

2.4 Basic heat exchanger analysis; classification of heat exchangers.

  1. I .C. Engines:

3.1 Classification, thermodynamic cycles of operation; determination of break power, indicated power, mechanical efficiency, heat balance sheet, interpretation of performance characteristics, petrol, gas and diesel engines.

3.2 Combustion in SI and CI engines, normal and abnormal combustion; effect of working parameters on knocking, reduction of knocking; Forms of combustion chamber for SI and CI engines; rating of fuels; additives; emission.

3.3 Different systems of IC engines- fuels; lubricating; cooling and transmission systems. Alternate fuels in IC engines.

  1. Steam Engineering:

4.1 Steam generation- modified Rankine cycle analysis; Modern steam boilers; steam at critical and supercritical pressures; draught equipment; natural and artificial draught; boiler fuels solid, liquid and gaseous fuels. Steam turbines - principle; types; compounding; impulse and reaction turbines; axial thrust.

4.2 Steam nozzles- flow of steam in convergent and divergent nozzle; pressure at throat for maximum discharge with different initial steam conditions such as wet, saturated and superheated, effect of variation of back pressure; supersaturated flow of steam in nozzles, Wilson line.

4.3 Rankine cycle with internal and external irreversibility; reheat factor; reheating and regeneration, methods of governing; back pressure and pass out turbines.

4.4 Steam power plants - combined cycle power generation; heat recovery steam generators (HRSG) fired and unfired, co-generation plants.

  1. Refrigeration and air-conditioning:

5.1 Vapour compression refrigeration cycle - cycle on p-H & T-s diagrams; eco-friendly refrigerants - R134a,123; Systems like evaporators, condensers, compressor, expansion devices. Simple vapour absorption systems.

5.2 Psychrometry - properties; processes; charts; sensible heating and cooling; humidification and dehumidification effective temperature; air-conditioning load calculation; simple duct design.

Also Check: 

Related Categories

Live users reading now